Acta Crystallographica Section C
Crystal Structure

Hydrogen-bonded chains in N -(2-nitrophenyl)phenylamine

Susan A. McWilliam, ${ }^{\text {a }}$ Janet M. S. Skakle, ${ }^{\text {a }}$ James L. Wardell, ${ }^{\text {a }}$ John Nicolson Low ${ }^{\text {a }}$ and Christopher Glidewell ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\mathbf{b}}$ School of Chemistry, University of St Andrews, St
Andrews, Fife KY16 9ST, Scotland
Correspondence e-mail: cg@st-andrews.ac.uk

Received 26 April 2001
Accepted 14 May 2001
Molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, are markedly non-planar. There is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and the molecules are linked into zigzag chains by a single $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Comparisons are made with the supramolecular aggregation in isomeric amino-nitro derivatives, and in some N-methylnitroanilines.

Comment

The structures of C-methylated nitroanilines exhibit a wide range of supramolecular aggregation patterns (Cannon et al., 2001; Ferguson et al., 2001); in general, where there are no Nsubstituents, both $\mathrm{N}-\mathrm{H}$ bonds and both $\mathrm{N}-\mathrm{O}$ bonds participate in the hydrogen bonding. However, N -substitution necessarily produces a mismatch in the numbers of $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}$ bonds, opening the possibility of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbond formation wherever there is an excess of hard hydrogenbond acceptors over hard hydrogen-bond donors. Here, we report the structure of such a nitroaniline, N-phenyl-2-nitroaniline [N-(2-nitrophenyl)phenylamine], (I).

Molecules of (I) exhibit a very wide $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle (Table 1), together with a conrotatory twist of the two independent aryl rings out of the central $\mathrm{C}-\mathrm{N}-\mathrm{C}$ plane. The wide angle is typical of sterically hindered secondary amines and the twisting of the rings, which is similar to that observed in $\mathrm{Ph}_{3} \mathrm{~N}$ (Sobolev et al., 1985), may be ascribed to a compromise between minimization of repulsive $\mathrm{H} \cdots \mathrm{H}$ contacts between the rings and maximization of conjugative overlap between the rings and the imino N atom. The $\mathrm{C}-\mathrm{N}$ distances are unusual: the two independent distances to N 1 are not only significantly different, but they are both very long for their type, where the mean value is $1.353 \AA$ (Allen et al., 1987); the larger $\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles are associated with the longer $\mathrm{C}-\mathrm{N}$ bond. The $\mathrm{C}-\mathrm{NO}_{2}$ distance is intermediate between the rather short bonds typically found in 2 - and 4-nitroanilines, where electronic delocalization is possible, and the longer bonds found in unconjugated systems, such as

3-nitroanilines; at the same time, the nitro group is significantly twisted out of the plane of the adjacent aryl ring, so reducing the possible conjugation. While the $\mathrm{C}-\mathrm{C}$ distances in the un-nitrated ring fall in a rather narrow range, those in the nitrated ring are consistent with a modest degree of conjugation, as in (Ia).

(I)

(II)

(IV)

(VI)

(Ia)

(III)

(V)

(VII)

In compound (I) (Fig. 1), there is an intramolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, as typically found in 2-nitroanilines (Table 2). In addition, the molecules are weakly linked by C $\mathrm{H} \cdot \cdots \mathrm{O}$ hydrogen bonds; C 25 in the molecule at (x, y, z) acts as hydrogen-bond donor to O 1 in the molecule at $\left(-\frac{1}{2}+x, 2-y\right.$, z), and propagation of this hydrogen bond produces a $C(9)$ chain parallel to [100], generated by the glide plane at $y=1.0$ (Fig. 2). There are two chains of this type running through each unit cell and they lie in the domains $-0.08<z<0.48$ and $0.42<z<0.98$; there are neither hydrogen bonds nor aromatic $\pi-\pi$-stacking interactions between the chains. It is striking that the same O atom, O 1 , is the acceptor of both hydrogen bonds in this structure (Table 2); despite the abundance of aromatic $\mathrm{C}-\mathrm{H}$ bonds, O 2 does not participate in the hydrogen bonding.

Despite repeated efforts to crystallize the isomeric 4-nitrodiphenylamine, (II), no crystals suitable for single-crystal X-ray analysis have been obtained. However, the structures

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
of three further isomeric aminonitrobiphenyls, (III)-(V), are available in the Cambridge Structural Database (CSD; Allen \& Kennard, 1993). In compound (III) (CSD code KEFLEM; Graham et al., 1989), the amino group acts as a double donor and the nitro group as a double acceptor of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; each molecule is thereby linked to four others in a (4,4)-net (Batten \& Robson, 1998) built from a single type of $R_{4}^{4}(30)$ ring, analogous to the $(4,4)$-net of $R_{4}^{4}(22)$ rings found in 4-nitroaniline itself (Tonogaki et al., 1993). In the isomeric biphenyl (IV) (CSD code NIAMBP; Fallon \& Ammon, 1974), the supramolecular structure is again twodimensional. The amino group at (x, y, z) acts as donor, via H 11 , to both O atoms in the molecule at $\left(1+x,-\frac{1}{2}-y, \frac{1}{2}+z\right)$, so generating a $C(10)\left[R_{1}^{2}(4)\right]$ chain of rings parallel to [201]; the same amino group acts as donor, via H 12 , to O 11 at (x, $-\frac{1}{2}-y, \frac{1}{2}+z$) producing a $C(10)$ chain parallel to [001]. The combination of the [201] and [001] chains generates a sheet structure (Fig. 3). Thus, while in both (III) and (IV), all the $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}$ bonds participate in the formation of hard hydrogen bonds, the pattern of these hydrogen bonds is entirely different. In (II), there is a simple pairing of $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}$ bonds, whereas in (IV), one $\mathrm{N}-\mathrm{H}$ bond is linked to two O acceptors and one O acts as a double acceptor.

By contrast, in compound (V) (CSD code DIWFEU; Sutherland \& Ali-Adib, 1986), one of the $\mathrm{N}-\mathrm{H}$ bonds of the amino group plays no role in the hydrogen bonding, despite the numerical match between $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}$ bonds. The amino group at (x, y, z) acts, via a single H atom, as donor to both O atoms in the molecule at $(1-x,-y, 1-z)$. The resulting centrosymmetric dimer, centred at $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, thus contains two $R_{1}^{2}(4)$ rings and an $R_{2}^{2}(20)$ ring. Dimers of this

Figure 2
Part of the crystal structure of (II), showing the formation of a $C(9)$ zigzag chain. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $\left(\frac{1}{2}+x, 2-y, z\right)$ and $\left(-\frac{1}{2}+-x, 2-y, z\right)$, respectively.

Figure 3
Part of the crystal structure of (IV) (Fallon \& Ammon, 1974) showing the formation of a (010) sheet. For the sake of clarity, H atoms bonded to C atoms have been omitted.
type are linked into chains parallel to [150]; atom C11 at (x, y, $z)$ acts as hydrogen-bond donor to O 2 at $\left(-\frac{1}{2}+x, \frac{1}{2}+y, z\right)$ and propagation of this interaction yields a chain of fused alternating $R_{2}^{2}(20)$ and $R_{4}^{2}(12)$ rings (Fig. 4). Both O atoms in (V) participate in the hydrogen bonding, and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involves O 2 , which forms the longer of the two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the $R_{1}^{2}(4)$ ring. Thus, the expected hydrogen-bonding role of one of the $\mathrm{N}-\mathrm{H}$ bonds has apparently been usurped by a $\mathrm{C}-\mathrm{H}$ bond.

Also in the CSD are the structures of the N-methyl derivatives (VI) (CSD code MNOMAN10; Chiaroni, 1971) and (VII) (CSD code FUXNAN; Panunto et al., 1987). In (VI),

Figure 4
Part of the crystal structure of (V) (Sutherland \& Ali-Adib, 1986), showing the formation of a chain of fused rings. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(1-x$, $-y, 1-z$).
there is a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond linking the molecules into $C(7)$ translational chains, while in (VII), the molecules are linked by a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond into zigzag $C(8)$ chains. In neither compound are there any aromatic $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds so that, as in compound (I), one of the O atoms plays no role in the hydrogen bonding.

Thus, even where there is a numerical match between the $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}$ bonds, not all of these are necessarily participants in the hydrogen bonding, as with compound (V). In compounds (I), (VI) and (VII), where there is an excess of hydrogen-bond acceptors, this does not necessarily lead to the formation of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

Crystals of (I) suitable for single-crystal X-ray diffraction were obtained by recrystallization from ethanol of a commercial sample, purchased from Aldrich. Two different commercial samples of (II) were purified by thin-layer chromatography. Attempts were made to obtain material suitable for single-crystal X-ray diffraction by crystallization from anhydrous ethanol, aqueous ethanol, chloroform and ethyl acetate, in all cases without success.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=214.22$
Orthorhombic, $\mathrm{Pc}_{\mathrm{C}} 2_{1}$
$a=14.7077$ (5) \AA
$b=10.1602(4) \AA$
$c=6.7878(2) \AA$
$V=1014.32(6) \AA^{3}$
$Z=4$
$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

KappaCCD diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.983, T_{\text {max }}=0.996$
9187 measured reflections
1246 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.111$
$S=1.08$
1246 reflections
143 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 1246 reflections
$\theta=3.4-27.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, orange
$0.18 \times 0.10 \times 0.04 \mathrm{~mm}$

1071 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-18 \rightarrow 16$
$k=-13 \rightarrow 13$
$l=-7 \rightarrow 8$
Intensity decay: negligible

Compound (I) crystallized in the orthorhombic system. Space groups $P c a 2_{1}$ and Pcam were permitted by the systematic absences; the unit-cell volume indicated that $Z=4$, and hence $P c a 2_{1}$ was chosen, and confirmed by the successful structure analysis. H atoms were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$. In the absence of any significant anomalous scatterers, attempts to determine the absolute structure by Flack refinement (Flack, 1983) led to an inconclusive (Flack \& Bernardinelli, 2000) value of the Flack parameter [1.1 (15)]; hence the Friedel equivalents were merged before the final refinements.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C11-C12	$1.409(3)$	C21-C22	$1.383(3)$
C12-C13	$1.404(3)$	C22-C23	$1.387(2)$
C13-C14	$1.372(3)$	C23-C24	$1.384(4)$
C14-C15	$1.386(3)$	C24-C25	$1.378(5)$
C15-C16	$1.377(3)$	C25-C26	$1.392(3)$
C16-C11	$1.415(3)$	C26-C21	$1.393(4)$
C12-N2	$1.446(3)$	N1-C11	$1.372(3)$
N2-O1	$1.254(3)$	N1-C21	$1.415(3)$
N2-O2	$1.227(2)$		
C11-N1-C21	$127.3(2)$		$-32.9(4)$
			$150.9(3)$
C21-N1-C11-C12	$162.4(3)$	C11-N1-C21-C22	
C21-N1-C11-C16	$-19.5(5)$	C11-N1-C21-C26	
C11-C12-N2-O1	$15.7(4)$	C11-C12-N2-O2	$-165.5(2)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.88	1.97	$2.627(3)$	130
C25-H25 O^{i}	0.95	2.56	$3.219(3)$	127

Symmetry code: (i) $x-\frac{1}{2}, 2-y, z$.
SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England, using an Enraf-Nonius KappaCCD diffractometer. The authors thank the staff for all their help and advice.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1481). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Cannon, D., Glidewell, C., Low, J. N., Quesada, A. \& Wardell, J. L. (2001). Acta Cryst. C57, 216-221.
Chiaroni, A. (1971). Acta Cryst. B27, 448-458.
Fallon, L. \& Ammon, H. L. (1974). J. Cryst. Mol. Struct. 4, 63-75.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2001). Acta Cryst. C57, 315-316.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Graham, E. M., Miskowski, V. M., Perry, J. W., Coulter, D. R., Stiegman, A. E., Schaefer, W. P. \& Marsh, R. E. (1989). J. Am. Chem. Soc. 111, 8771-8779. Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Panunto, T. W., Urbánczyk-Lipkowska, Z., Johnson, R. \& Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786-7797.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Y. \& Guryanova, E. N. (1985). Acta Cryst. C41, 967-971.

Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands.
Sutherland, H. H. \& Ali-Adib, Z. (1986). Acta Cryst. C42, 432-433.
Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. \& Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.

